

**Research Webinar Series** Session 2: Belowground carbon cycle



#### Erik Velasco

evelasco@mce2.org https://erikvelasco.weebly.com/

#### *What lies beneath? Illuminating the unseen nature belowground*

November 6, 2020





Elvagris Segovia Department of Geography

Amy M.F. Choong Benjamin K.Y. Lim Department of Biological Sciences

#### Acknowledgements



Alex Yee Nigel Goh Hassam Ibrahim Subhadip Ghosh Seow Kang Ling

**BELAWARE**.

Rodrigo Vargas Department of Plant and Soil Sciences

NATIONAL RESEARCH FOUNDATION SINGAPORE

# Urban greenery provides multiple environmental and social benefits.

#### Cities are disturbed ecosystems.

- Enhance urban aesthetics.
- Provide open-spaces for recreation
- Reduce water runoff
- Increase water infiltration
- Mitigate soil erosion
- Cool local climate
- Remove airborne pollutants
- Offset greenhouse gas emissions

Does urban greenery act as sink or emission source of atmospheric CO<sub>2</sub>?



Mowing emissions

### Photosynthesis

### Soil respiration (soil efflux)



#### **Biomass productivity**

### CO<sub>2</sub> production

Carbon storage

Heterotrophic activity Autotrophic activity



Total CO<sub>2</sub> removed from the atmosphere

Soil respiration & CO<sub>2</sub> storage

8

Telok Kurau, Singapore Sep 2014 – Jul 2017

### Soil respiration: flux gradient system



Solid-state CO<sub>2</sub> sensors (Vaisala CARBOCAP GMM222)







Soil Temp. & water content (DECAGON 5TM)



## Temperature

Moisture



### Soil characterization



- Total Organic Carbon (TOC)
- pH
- Bulk density

## Flux chamber measurements

Manufacture EPTEMBER 2

all in



-----



### Monthly variations

## Turfgrass biomass productivity



Clipping harvesting

### Turfgrass carbon content



### Grass biomass productivity



 $\psi_{\theta}$  = moisture tension  $\psi_{\theta}$  = 1.60 ×  $\theta^{-2.56}$ 

 $\theta$  = soil volumetric water content

## Mowing emissions

#### Annual CO<sub>2</sub> emissions (ton km<sup>2</sup> yr<sup>-1</sup>)

## The cleanest machinery

| Mowing<br>frequency        | Trimmon |            |              | Didias manage |
|----------------------------|---------|------------|--------------|---------------|
|                            | Trimmer | Push mower | Lawn tractor | Riding mower  |
| Every week                 | 78.2    | 82.6       | 70.1         | 28.0          |
| Every 2 <sup>nd</sup> week | 39.1    | 41.3       | 35.1         | 14.0          |
| Every 3 <sup>rd</sup> week | 25.6    | 27.0       | 22.9         | 9.2           |
| Once per month             | 18.0    | 19.1       | 16.2         | 6.5           |

![](_page_17_Picture_3.jpeg)

The most common

Annual CO<sub>2</sub> flux (ton km<sup>-2</sup> yr <sup>-1</sup>)

Soil CO<sub>2</sub> production Soil respiration - 4022 + 3370

Soil storage Biomass productivity Mowing emissions - 652 - 10(1 + 27

+ 1671

Harvested clippings are burnt

**Total flux** 

- 2296

+ 1046

## It is all about waste disposal management

#### During COVID-19 Circuit Breaker

#### After COVID-19 Circuit Breaker

21

Please clean up after your pet and bin all litter. Let's keep the place we love clean.

A STATE OF THE OWNER AND A STATE OF THE ADDRESS OF THE OWNER ADDRES

Please clean up after your pet and bin all litter. Let's keep the places we love clean.

#### Turfgrass impact per capita

![](_page_21_Picture_1.jpeg)

#### Carbon footprint

22 ton  $CO_2 yr^1$ 

Global Carbon Project, 2018. https://doi.org/10.18160/gcp-2018

![](_page_21_Picture_5.jpeg)

#### *CO*<sub>2</sub> *flux per km*<sup>2</sup> *of turfgrass*

![](_page_21_Picture_7.jpeg)

### Turfgrass impact at city scale

- Energy consumption
- Industrial activity
- Waste incineration

### 48,560 Gg CO<sub>2</sub> yr<sup>1</sup>

National Environmental Agency, 2018. Singapore's Fourth National Communication and Third Biennial Update Report Under the United Nations Framework Convention on Climate Change

#### 112 km<sup>2</sup> covered by turfgrass

Gaw et al., Data, 2019

-257 Gg CO<sub>2</sub> yr<sup>-1</sup>

Ideal waste disposal management

-0.53%

+117 Gg CO<sub>2</sub> yr<sup>-1</sup> Grass clippings

are burnt

+0.24%

### Turfgrass & trees

#### Sink

![](_page_23_Picture_2.jpeg)

#### **Emission source**

![](_page_23_Picture_4.jpeg)

Ideal waste

disposal management

Grass clippings are burnt

![](_page_23_Picture_6.jpeg)

Considering 15% of urban surface covered by turfgrass

H = 9.50 m

![](_page_23_Figure_9.jpeg)

Velasco, E. & Chen, K.W. Urban For. Urban Green., 44, 126387, 2019. https://doi.org/10.1016/j.ufug.2019.126387

![](_page_24_Picture_1.jpeg)

#### ton $CO_2 km^{-2} yr^{-1}$

![](_page_24_Figure_3.jpeg)

Velasco et al. Atmos. Chem. Phys., 2013. Velasco & Chen, Urban For. Urban Green., 2019.

![](_page_25_Picture_0.jpeg)

#### ONE MILLION TREES MOVEMENT

The One Million Trees movement aims to restore nature back into our city through the planting of more than a million trees across Singapore over the next ten years, as part of NParks' efforts to achieve our new City in Nature vision. Stay tuned to find out how you can get involved!

26

112 km<sup>2</sup> of vegetation with structure dominated by - 257 Gg CO<sub>2</sub> yr<sup>1</sup> human management (without Tree Canopy)\* - 289 Gg CO<sub>2</sub> yr<sup>-1</sup> **One-million trees** - 32 Gg CO<sub>2</sub> yr<sup>1</sup> (D = 25.6 cm, H = 9.5 m)0.60% emissions at city scale Offset emissions of 13,140 people \*Gaw et al., Data, 2019.

#### Take-home message

Urban greenery can act as a sink for CO<sub>2</sub> with an adequate waste disposal management.

> However, it won't offset our emissions.

#### References

#### Submitted to Journal of Environmental Management

#### Carbon dioxide dynamics in a residential lawn of a tropical city

#### Erik Velasco<sup>a\*</sup>, Elvagris Segovia<sup>b</sup>, Amy M. F. Choong<sup>c</sup>, Benjamin K. Y. Lim<sup>c</sup>, Rodrigo Vargas<sup>d</sup>

<sup>a</sup> Centre for Urban Greenery and Ecology, National Parks Board, Singapore
 <sup>b</sup> Department of Geography, National University of Singapore, Singapore
 <sup>c</sup> Department of Biological Sciences, National University of Singapore, Singapore
 <sup>d</sup> Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
 \*Corresponding author: <u>evelasco@mce2.org</u>

#### Highlights:

- Urban lawns in the tropics can act either as a sink or as an emission source of CO2.
- Belowground carbon accumulation was observed under steady state conditions.
- Warm and humid conditions increase biomass production and mowing frequency.
- If grass clippings are incinerated, the lawn acts as a net CO<sub>2</sub> emission source.
- Locally derived empirical models can be used to account for carbon stocks and fluxes.

![](_page_27_Figure_11.jpeg)

Contents lists available at ScienceDirect
Urban Forestry & Urban Greening
journal homepage: www.elsevier.com/locate/ufug

Urban Forestry & Urban Greening 44 (2019) 126387

Carbon storage estimation of tropical urban trees by an improved allometric model for aboveground biomass based on terrestrial laser scanning

Erik Velasco<sup>a,\*</sup>, Kian Wee Chen<sup>b</sup>

<sup>a</sup> Centre for Urban Greenery and Ecology, National Parks Board, Singapore

<sup>b</sup> Andlinger Center for Energy and the Environment, Princeton University, New Jersey, USA

![](_page_27_Figure_17.jpeg)

Does urban vegetation enhance carbon sequestration?

Erik Velasco<sup>a,\*</sup>, Matthias Roth<sup>b</sup>, Leslie Norford<sup>a</sup>, Luisa T, Molina<sup>c</sup>

\* Singapore-MIT Alliance for Research and Technology (SMART), Center for Environmental Sensing and Modeling (CENSAM), 1 CREATE Way, #09-03 CREATE Tower, Singapore 138602, Singapore

<sup>6</sup> National University of Singapore (NUS), Department of Geography, Singapore, Singapore <sup>6</sup> Molina Center for Energy and the Environment (MCE2), La Jolla, CA, USA

Atmos. Chem. Phys., 13, 10185–10202, 2013 www.atmos-chem-phys.net/13/10185/2013/ doi:10.5194/acp-13-10185-2013 © Author(s) 2013. CC Attribution 3.0 License. Atmospheric Of Chemistry And Physics

CrossMark

![](_page_27_Picture_24.jpeg)

#### The role of vegetation in the $CO_2$ flux from a tropical urban neighbourhood

#### E. Velasco<sup>1</sup>, M. Roth<sup>2</sup>, S. H. Tan<sup>2</sup>, M. Quak<sup>2</sup>, S. D. A. Nabarro<sup>3</sup>, and L. Norford<sup>1</sup>

 <sup>1</sup>Singapore-MIT Alliance for Research and Technology (SMART), Center for Environmental Sensing and Modeling (CENSAM), Singapore
 <sup>2</sup>Department of Geography, National University of Singapore (NUS), Singapore
 <sup>3</sup>Department of Physics, Imperial College, London, UK